
MECH226 VIBRATION
Section 2.  Forced vibration of a single degree-of-freedom system

In Section 1, we saw that when a system is given an initial input of energy, either
in the form of an initial displacement or an initial velocity, and then released it will,
under the right conditions, vibrate freely.  If there is damping in the system, then
the oscillations die away.  If a system is given a continuous input of energy in the
form of a continuously applied force or a continuously applied displacement, then
the consequent vibration is called forced vibration. The energy input can
overcome that dissipated by damping mechanisms and the oscillations are
sustained.
We will consider two types of forced vibration.  The first is where the ground to
which the system is attached is itself undergoing a periodic displacement, such
as the vibration of a building in an earthquake. The second is where a periodic
force is applied to the mass, or object performing the motion; an example might
be the forces exerted on the body of a car by the forces produced in the engine.
The simplest form of periodic force or displacement is sinusoidal, so we will begin
by considering forced vibration due to sinusoidal motion of the ground.
In all real systems, energy will be dissipated, i.e. the system will be damped, but
often the damping is very small. So let us first analyse systems in which there is
no damping.

(a)  Undamped forced vibration – ground excitation
The simplest single degree-of-freedom (DOF) system is the spring-mass system
shown in Figure 2.1.  Again, the extension of the spring when the mass hangs in
equilibrium is e, so that ke = mg.  Suppose that the support moves with a
sinusoidal displacement, y = Y0sinΩt.  Y0 is the amplitude of the excitation, and Ω
is the excitation frequency.  The mass will respond with a displacement x from its
equilibrium position.  This means that the resulting extension of the spring at any
time is (e+x-y).  The free body diagram (FBD) of the weight is shown in Figure
2.2.
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Figure 2.1. Simple spring-mass system with ground excitation
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The equation of motion of the weight is, therefore:
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where, as before, ω is the natural frequency, 
m
k .

This is a standard second-order differential equation, and the solution is made up
of two parts, the complementary solution and the particular solution.  The
complementary solution is obtained by setting the right-hand side of the equation
equal to 0.  This is exactly the same equation as for free vibration, and therefore
has the solution Asin(ωt+ε), where A and ε depend on the initial conditions.
Although the system is modelled as undamped, all real systems do possess
damping, so that the free vibration will, eventually die out.  Of greater interest,
therefore, is the particular solution, which represents the steady state response,
i.e. the response that is maintained for as long as the excitation.

Try a particular solution of the form x = X0sinΩt and see whether this satisfies the
equation of motion:

If x = X0sinΩt , then differentiating with respect to time will give:
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Dividing all through by sinΩt, since, generally, this does not equal 0:
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where 
ω
Ω=r , the ratio of the excitation (or driving) frequency to the natural

frequency (also known as the frequency ratio).

Thus, x = X0sinΩt is a solution, provided X0 is given by equation (2.2).  So
equation (2.2) tells us how the amplitude of the response varies with the driving



frequency Ω.  If Ω > ω, r >1, and equation (2.2) predicts that the amplitude of the
response will be negative.  This merely means that it will be in the opposite
direction to the excitation displacement.  Another way to express this is to
introduce the idea of phase.  If two sinusoidal displacements are in phase, they
move together, while if they are exactly out of phase, one will reach its maximum
value at the same time as the other reaches its minimum value, as illustrated in
Figure 2.3.

Since Asin(Ωt-π) = -Asin(Ωt), the negative amplitude can be described by a
phase angle, φ, where φ = π.

So we can write the solution as x = X0sin(Ωt-φ)

where X0 is always positive and φ is the phase angle, which is 0 for Ω < ω and π
for Ω > ω.  The response is said to lag the excitation by φ.

What about when Ω = ω?  Well, then, from equation (2.2), X0 = ∞, and the
amplitude becomes infinitely large.  This phenomenon is called resonance, and
the natural frequency is also the resonant frequency.  In other words, in an
undamped system, if we try to drive it at its natural frequency the system
resonates and the amplitude of the response becomes very large.  To see how
the amplitude of the response varies with the driving frequency, we can plot X0
against r (Figure 2.4).
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Figure 2.3. (a) Two sine waves exactly in phase φ = 0 (b) two sine waves exactly out of phase φ= π
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The magnitude of the ratio, X0/Y0 is called the transmissibility, T.
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T represents the multiple of the driving displacement amplitude (the input) that is
transmitted through the spring to the produce the response amplitude of the
mass (the output).  It is, therefore, a ratio of output to input.

(b)  Undamped forced vibration – applied force
We now consider the case when the vibration is caused by a sinusoidal force F =
F0sinΩt applied to the mass.

The system is shown in Figure 2.5, and the free body diagram of the weight in
Figure 2.6.  Applying Newton’s second law in the usual way gives:
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Figure 2.5. Simple spring-mass system with
excitation by an applied force
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F = F0sinΩt
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where, as before, ω is the natural frequency, 
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If we follow exactly the same reasoning as we did in finding the particular solution
to equation (2.1), we find that
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(For details of the analysis, see Appendix 1).
This has exactly the same form as equation (2.2) but F0/k replaces Y0. The
response amplitude, therefore, varies with r in exactly the same way as shown in
Figure 2.4.  As before, if the frequency of the excitation force is the same as the
natural frequency of the system, resonance occurs, and the system vibrates with
an infinite amplitude.
Note that F0/k is the static deflection of the spring when a steady force F0 is

applied.  The ratio 
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much the static displacement is multiplied when the force is sinusoidal.  From
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Notice that the force transmitted through the spring is kx (draw the free body
diagram of the support to show this).  Suppose the force transmitted is P, then
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So the magnification, M and the transmissibility T have the same value in this
case, but there is a subtle difference between them, by their definitions.  The
transmissibility represents the ratio of the output to the input.  So, if the input is
excitation by ground displacement, then the output is also a displacement, and is
the amplitude of the response.  But if the input is excitation by an applied force,
then the output is also a force, in this case, that transmitted through the spring to
the ground.



Summary: Forced vibration with no damping
For a simple spring-mass system, undergoing forced vibration by
means of ground excitation, the equation of motion of the mass is

 tkYkxxm Ω=+ sin0��

where Ω is the frequency of the excitation (the driving frequency).

The steady state response is )sin(0 φ−Ω= tXx
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If the excitation is due to a sinusoidal force F0sinΩt applied to the
mass, the equation of motion is

 tFkxxm Ω=+ sin0��

The steady state response is again )sin(0 φ−Ω= tXx

where the amplitude 2
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In both cases, when the driving frequency Ω is equal to the natural
frequency ω (r = 1) the response amplitude becomes infinite.  This is
known as resonance.

Example 1.



A 750 gram component is mounted via springs to a base which is on springs is
expected to vibrate at a frequency of 30 rad s-1 with an amplitude of 3 mm. The
component is known to have a natural frequency of 22 rad s-1 and very little
damping.  Estimate (a) the spring stiffness (b) the frequency ratio (c) the
transmissibility (d) the response amplitude.
Solution:
We have a situation of undamped forced vibration by ground excitation.
Start by writing down all the information you are given:

m = 750 g = 0.75 kg ω = 22 rad s-1

Ω = 30 rad s-1 Y0 = 3 mm

 (a) m
k=2ω   36375.0*)22( 22 ===∴ mk ω  Nm-1

∴  the spring stiffness = 363 Nm-1

(b)  The frequency ratio: 364.1
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(d)  The response amplitude: 5.33*162.100 ===TYX mm

Example 2
A delicate instrument of mass 500 g is mounted on springs to isolate it from the
vibration of the table on which it is placed.  The table is found to vibrate with an
amplitude of 4 mm at 50 Hz.  The instrument is expected to tolerate a maximum
amplitude of 0.5 mm.  What should be the maximum stiffness of the springs used
in the mounting.  Assume that there is negligible damping, and that the system
behaves as a single degree-of-freedom system.
Solution:
Another case of undamped forced vibration by ground excitation.
Again start by writing down what you know:  m = 500 g = 0.5 kg

Y0 = 4 mm Ω = 50 Hz = 2π*50 = 314.2 rad s-1 X0 ≤ 0.5 mm.
Let k be the spring stiffness.  k determines the natural frequency, so we need to
try and find the maximum allowed natural frequency of the system.  We know the
excitation frequency, therefore we need to know the frequency ratio, r.
How to find r?  Well, we know both X0 (its maximum value) and Y0 and can
therefore find the maximum transmissibility, and this is related to r. So start by
finding T, then r, then w and then k.



The transmissibility 125.0
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So the maximum allowed transmissibility is T = 0.125

T can also be expressed in terms of r: 21
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We know that if r< 1 T is positive, while if r > 1 T will be negative, so we have two
situations which will satisfy the conditions:
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But this gives an “imaginary” value for r, so is impossible.

The other condition gives 8
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If you look at Figure 2.4 you will see that, when r >1, the larger r gets the smaller
gets the amplitude.  This means that the value we have worked out for r of 3 is
the smallest value it can take to keep the response amplitude at the required
level.  Therefore, we need r ≥ 3.

But 
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So the maximum value that ω can have is 104.7 rad s-1.

 Now 54819.76*5.0 22 === ωmk  Nm-1.  This is the maximum value it can take,
since 104.7 rad s-1 is the highest permissible value of ω.
Therefore the maximum stiffness of mounting spring stiffness 5.48 kNm-1.

Example 3.
A machine of mass 1000 kg is supported on a vertical flexible mounting,
modelled as a single degree-of-freedom system.  The mounting has a total
stiffness 50 kNm-1 but negligible damping.  Any horizontal motion of the system
should be ignored.  In normal operation the machine is subjected to a vertical
force F = F0 sinΩt where the amplitude F0 is 2500 N.  Calculate the response



amplitude and the force transmitted to the foundations when the driving
frequency is (a) 20 Hz and (b) 2 Hz.
Solution:
This is a case of undamped forced vibration by an applied force.
(a)  We know: m = 1000 kg   F0 = 2500 N

Ω = 20 Hz = 2π*20 = 125.7 rad s-1 k = 50 kNm-1.

First find the natural frequency 07.750
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The amplitude of vibration of the engine is
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(b) Ω = 2 Hz = 2π*2 = 12.6 rad s-1
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Reducing the excitation frequency so that r is closer to 1 has increased the
amplitude of the response by more than 100 times, and the force transmitted by
a similar amount.


